jueves, 30 de mayo de 2013

Matemático peruano Herald Helfgott, demuestra la Conjetura débil de Goldbach

Herald Helfgott
Harald Helfgott. Recuerde ese nombre. El matemático peruano acaba de hacer historia al hacer pública su demostración de un enunciado de importancia central en teoría de números: la conjetura débil de Goldbach. Este resultado (del que seguramente oiremos más en el futuro) viene a coronar una trayectoria académica de ensueño. A sus 35 años, Helfgott ya se ha hecho acreedor, entre otras distinciones, del Premio Leverhulme, otorgado por la Fundación Leverhulme, del Premio Whitehead, otorgado por la Sociedad Matemática de Londres, y del Premio Adams, otorgado por la Facultad de matemáticas de Cambridge y el St. John’s College. Vive actualmente en París y se desempeña como investigador en el CNRS (Centro Nacional para la Investigación Científica). La conjetura débil de Goldbach afirma que: Todo número impar mayor que 5 puede expresarse como suma de tres números primos. Tenemos expresada en una línea de texto una verdad que no había podido ser demostrada por más de 270 años, y que ha sido descrita por GH Hardy en su famoso discurso de 1921 como uno de los problemas irresueltos más difíciles de las matemáticas.
Curiosamente, el enunciado es entendible por un escolar; su demostración, sin embargo, ocupa 133 páginas. ¿Podría intentar describir para una audiencia de no especialistas algunas de las razones por las que esta demostración ha eludido a los matemáticos por tanto tiempo?
Primero – se logró progresar muy poco antes del siglo XX. El primer gran paso fue tomado por Hardy y Littlewood, en 1923; fueron ellos quienes comenzaron a usar el análisis de Fourier (“método del círculo”) en la teoría de números. En general, la teoría analítica de números – la rama que estudia, entre otras cosas, cuántos números primos hay hasta un número dado, cómo están distribuidos, etc. - comenzó a florecer recién a fines del siglo XIX.
Los trabajos de Hardy y Littlewood, en 1923, y de Vinogradov, en 1937, fueron trabajos pioneros, hechos en una época en que varios conceptos que resultaron ser relacionados a ellos – por ejemplo, la así llamada “gran criba” – aún no habían sido desarrollados o comprendidos completamente. Curiosamente, la importancia de “suavizar” funciones antes de usar el análisis de Fourier era algo comprendido por los analistas, como Hardy-Littlewood, o por los matemáticos aplicados y físicos, o, probablemente, por los técnicos de su estación de radio, pero no se volvió un lugar común entre la gente de teoría de números hasta hace una generación, a lo más.
También se ha requerido bastante tiempo de cálculo, dado el enfoque que seguí, aunque los requisitos de tiempo de máquina, si bien considerables, no fueron enormes. Hace 30 años, había computadoras de suficiente potencia, pero el tiempo de maquina era mucho más costoso, y conseguir acceso a él hubiera sido una larga labor de política académica. En consecuencia, los matemáticos seguían rutas un poco distintas al intentar probar el teorema.
 
¿Cómo se inició en las matemáticas? ¿De dónde proviene esa pasión?
De la manera aburrida: de la casa. Mi padre escribió libros de análisis y geometría cuyos borradores leí; mi madre es estadística. Crecí entre libros, y se me alentó en mis intereses. Cuando tenía 12 o 13 años, comencé a ir a grupos de jóvenes que se reunían en San Marcos y la Católica para entrenarse para las competencias (“olimpiadas de matemática”) a nivel latinoamericano. Pronto se nos hizo claro que la competencia no era lo más importante – lo importante era aprender juntos, pedir consejos a estudiantes con más experiencia, y conocer a jóvenes de otros países con los mismos intereses.
Usted ha desarrollado una carrera espectacular en los Estados Unidos y Europa; ha ganado importantes premios y su trabajo ya era conocido en este ámbito en círculos académicos. Sin embargo, estos nuevos resultados van a darle muy pronto un nivel de visibilidad distinto. ¿Cómo se siente ahora y cuáles son sus proyectos a futuro?
Creo que se trata de una buena oportunidad para hacer un poco de divulgación matemática. Ya desde hace tiempo ayudo a organizar cursillos y escuelas de verano dentro y fuera de Sudamérica – probablemente ser visible fuera del ámbito matemático facilite conseguir apoyo.
Fuente: Diario digital el Hermanon.

No hay comentarios:

Publicar un comentario