miércoles, 5 de junio de 2013

Paolo Ruffini, un gran matemático ignorado

El matemático y médico italiano Paolo Ruffini nació el 22 de septiembre de 1765 en la localidad de Valentano, en aquella época perteneciente a los Estados Pontificios.
Su padre era el médico local. Más tarde, la familia se trasladó a Reggio, en el norte de la actual Italia y Paolo se matriculó en la universidad de Módena para estudiar matemáticas, medicina, filosofía y literatura.
Entre sus profesores estaban Fantini, que le enseñó geometría y Cassiani que le enseñó cálculo. Se graduó en 1788. Ese mismo año fue nombrado profesor de fundamentos de análisis y, poco después, de la asignatura de Elementos Matemáticos en la universidad de Módena. En 1791 obtuvo permiso para ejercer la medicina e impartir clases de clínica médica en la misma Universidad.
En 1796, tras la ocupación de Módena por las tropas francesas, fue elegido representante de la República Cisalpina creada por Napoleón.
Dos años después reanudó sus actividades científicas y al negarse a pronunciar el juramento de fidelidad a la República Cisalpina fue apartado de la docencia y cargos públicos.

Una vida con filosofía

Ruffini era un hombre tranquilo que se tomaba la vida con filosofía por lo que asumió la nueva situación de una forma positiva. Si no podía enseñar matemáticas, tenía más tiempo para dedicarse a la medicina y a sus pacientes.
Ejerció como médico durante 7 años, hasta la caída de Napoleón. En 1806 volvió a enseñar de nuevo matemáticas aplicadas en la Escuela Militar y en 1814 fue nombrado rector de la Universidad de Módena.
Entre 1817 y 1818 estudió la enfermedad del tifus al declararse una epidemia. Atendió a sus pacientes hasta que él mismo enfermó. Y aunque se recuperó parcialmente, tuvo que renunciar a su cátedra de medicina clínica. Pero no abandonó su trabajo científico y en 1820 publicó un artículo sobre el tifus basado en su propia experiencia.
Ruffini perteneció a las más doctas corporaciones de la Italia de su tiempo y llegó a ser Presidente del Instituto Italiano de las Ciencias. Pero es conocido -sobre todo- por haber descubierto el método que lleva su nombre para dividir polinomios cuando el divisor es un binomio de la forma x-a.
Las ecuaciones algebraicas.
Otra de sus grandes contribuciones a las Matemáticas fue la demostración de la imposibilidad de la solución general de las ecuaciones algebraicas de grados quinto y superiores, aunque cometió ciertas inexactitudes que serían corregidas por el matemático noruego Abel.
En aquella época, todo el mundo -incluido el matemático Lagrange- creía que las ecuaciones de quinto grado o quínticas podrían resolverse por radicales.
Sin embargo, Ruffini aseguró todo lo contrario, basándose en la teoría de grupos siguiendo y superando a Lagrange en el uso de permutaciones.
Ruffini fue el primero en definir el concepto de orden de un elemento, conjugación, descomposición en ciclos disjuntos y también en considerar subgrupos primitivos e imprimitivos de permutaciones.
Demostró el teorema de que el orden de una permutación es el mínimo común múltiplo de las longitudes de sus ciclos disjuntos. También que una permutación de cinco elementos que tenga orden cinco es necesariamente un ciclo de longitud cinco.
Pero la mayoría de los matemáticos de su época ignoraron a Ruffini, pues se adelantó a su tiempo con una demostración para la que no estaban preparados, incluido Lagrange. Y además se anticipó a la teoría de grupos, desarrollada más tarde por Galois.
Ruffini escribió también sobre filosofía polemizando con las ideas de Laplace. Entre sus obras destacan Teoría general de la ecuación general de grado superior al cuarto y Reflexión en torno a la solución de la ecuación algebraica general. Murió en Módena el 10 de mayo de 1822.

martes, 4 de junio de 2013

EL PAPIRO DE MOSCÚ



El papiro de Moscú, es junto con el de Rhind
el más importante documento matemático del Antiguo Egipto. Fue comprado por Golenishchev en el año 1883, a través de Abd-el Radard, una de las personas que descubrió el escondite de momias reales de Deir el Bahari. Originalmente se le conocía como Papiro Golenishchev pero desde 1912, cuando fue a parar al Museo de Bellas Artes de Moscú (nº 4576), se conoce como Papiro de Moscú. Con 5 metros de longitud y tan sólo 8 cm de anchura consta de 25 problemas, aunque algunos se encuentran demasiado dañados para poder ser interpretados. El papiro fue escrito en hierática en torno al 1890 a.C. (XII dinastía) por un escriba desconocido, que no era tan meticuloso como Ahmes, el escriba del papiro Rhind. Se desconoce el objetivo con el que fue escrito. En la imagen que mostramos se puede ver el original en hierática y la traducción en jeroglífico.
De los 25 problemas de que consta hay 2 que destacan sobre el resto; son los relativos al cálculo del volumen de una pirámide truncada (problema 14, que aparece en la imagen anterior), y el área de una superficie parecida a un cesto (problema 10). Este último es uno de los problemas más complicados de entender, pues no está clara la figura, y si la figura buscada fuese un cesto o un hemisferio entonces sería el primer cálculo de tal superficie conocido.
El contenido del Papiro de Moscú publicado por Richard J. Gillins en "Mathematics in the time of the pharaophs" es el siguiente

Problema Descripción
1-2 Ilegibles
3 Altura de un poste de madera
4 Área de un triángulo
5 "Pesus" de barras y pan
6 Área del rectángulo
7 Área de un triángulo
8-9 "Pesus" de barras y pan
10 Área de una superficie curva
11 "Barras y cestos" (?)
12 "Pesu" de cerveza
13 "Pesu" de barras y cerveza
14 Volumen de una pirámide truncada
15-16 "Pesu" de cerveza
17 Área de triángulo
18 Mediciones en palmos y codos.
19 Ecuación lineal
20 Fracciones de Horus
21 Mezcla de pan de sacrifio
22 "Pesus" de barras y cerveza
23 Cálculo del trabajo de un zapatero. Oscuro
24 Intercambios
25 Ecuación 2x+x = 9
Los problemas que aparecen en el papiro de Moscú no están tan trabajados como los que escribió Ahmes. Una prueba de ello es el problema número 21, referente al cálculo de pan para sacrificios. En este problema el escriba dice: "Método para calcular la mezcla de pan para sacrificios. Si te dicen 20 medidas como 1/8 de hekat y 40 medidas como 1/16 de un hekat, calcula 1/8 de 20. Resulta 2 1/2. Calcula ahora 1/16 de 40. Resulte 2 1/2. El total de ambas mitades es 5. Calcula ahora la suma de las otras mitades. El resultado es ahora 60. Divide 5 entre 60. Resulta 1/12. Entonces la mezcla es 1/12. (Si a primera vista no lo entiendes no te preocupes, pero la verdad es que es así de oscuro).

A continuación reproducimos los 2 problemas más interesantes del papiro de Moscu, el 10 y el 14.
  Problema 10
En este problema se pide calcular el área de una superficie que en principio parece un cesto de diámetro 4.5. La resolución parece emplear la fórmula S = (1 - 1/9)2 (2x)*x, siendo x = 4.5. El resultado final que aparece es de 32 unidades. Si tenemos en cuenta que (1 - 1/9)2 es el valor correspondiente a /4 para = 3 1/6 que, como hemos visto en el capítulo referente a geometría, era el valor empleado, entonces la superficie a analizar podría corresponderse perfectamente con una semiesfera de diámetro 4.5. Si esto fuese asi, tal y como se pensó en 1930, sería el primer resultado de cálculo del área de un hemisferio, anterior en 1500 años a los primeros cálculos conocidos sobre el área de una esfera. Posteriormente se sugirió que la figura que aparece representada podría ser un tejado semicilíndrico de diámetro 4.5 y longitud 4.5, cuya resolución es más lógica y sencilla que la de la esfera. En cualquier caso, tanto si se trata de un hemisferio como de un tejado semicilíndrico lo que si es cierto es que es uno de los primeros intentos de cálculo del área de una superficie curvilínea.
 
Problema 14
En este problema se pide calcular el área de la figura, que parece ser un trapecio isósceles, pero realmente se refiere a un tronco de pirámide cuadrangular. Alrededor de la figura pueden verse los signos hieráticos que definen las dimensiones. En la parte superior aparece un 2, en la inferior un 4 y dentro de la figura un 56 y un 6. Según se desarrolla el problema, parece ser que lo que se busca es calcular el volumen del tronco de pirámide cuadrangular de altura 6 y bases superior e inferior de 2 y 4. El desarrollo es el siguiente: - Elevar al cuadrado 2 y 4
- Multplicar 2 por 4
- Sumar los resultados anteriores
- Multiplicar el resultado anterior por un tercio de 6. El resultado es 56 El escriba finaliza diciendo "Ves, es 56; lo has calculado correctamente". Analizando el desarrollo vemos que lo que se ha aplicado es la fórmula: V = h(a2 + b2 + ab)/3
que por supuesto no aparece escrita en el papiro. Si consideramos ahora b=0, como se hace en el cálculo del volumen que aparece representado en Edfú, entonces se obtiene el volumen de una pirámide.
 
Fuente: egiptología.org.